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A B S T R A C T   

Recent extreme droughts in Europe have highlighted the urgent need to quantify their effects on ecohydrological 
fluxes (evapotranspiration, groundwater recharge) and water storage (mainly soil moisture) in the landscape. In 
response, we combined process-based (EcH2O-iso) and machine learning (NARX) models to estimate the 
enduring effects of long-term drought on water fluxes and storage and to project future short-term groundwater 
levels and recovery potential under various precipitation scenarios. The work was undertaken at the Demnitz 
Mill Creek (DMC), a 70 km2 mixed land use (arable crops and forestry) catchment in northern Germany. Our 
simulations indicated that the extreme drought years of 2018 and 2022 had the most marked impacts, leading to 
substantial declines in groundwater recharge (>40 %), evapotranspiration (up to 16 %) and soil moisture (up to 
6 %). Simulations indicated that groundwater levels may not recover in the next 15 years if recent precipitation 
anomalies persist. These findings underscore the urgent requirement for enhancing resilience and promoting 
integrated strategies in managing land and water resources to optimise water retention in landscapes and to 
better respond to drought.   

1. Introduction 

In recent years, the European lowlands have experienced significant 
increases in the frequency and severity of droughts, with a series of 
consecutive drought years starting in 2018, which is unprecedented in 
the past 2110 years (Büntgen et al., 2021). Most recently, there was a 1- 
in-500-year drought in 2022 (Toreti et al., 2022). These extreme 
drought conditions have made the study of their impacts on landscape 
water storage and ecosystem resilience both urgent and important. The 
extensive lowlands of Central Europe, characterized by their flat 
topography and contrasting landuse patterns, play a crucial role in the 
provision of water supplies, agricultural production, and the socio- 
economic stability of the continent (Buschmann et al., 2020; A. Smith 
et al., 2021). Specifically, over a third of Central Europe is devoted to 
extensive agricultural use (Hari et al., 2020), while conifer forests 
constitute 46 % of all European forests (Forest Europe, 2020). Numerous 
studies have confirmed that past drought events (e.g. 2003 and 2018) 
resulted in considerable deficits in water storage, affecting both soil 
moisture availability and groundwater levels (Hellwig et al., 2020; 
Samaniego et al., 2018). These events subsequently led to substantial 

crop yield losses and forest damage across Europe (Ciais et al., 2005; 
Naumann et al., 2021). According to a cross-sectoral study in Germany, 
the 2018 drought resulted in 20–40 % reduction in staple crops and 
forced logging of 25.1 million tons of damaged forests with possibility of 
other socio-economic instability in future drought events (Conradt et al., 
2023). 

Given the importance of soil moisture and groundwater as the 
essential sources of water storage to support vegetation growth and 
stream flow generation, tracking and resolving ecohydrologically- 
mediated fluxes and storage such as evapotranspiration, soil moisture 
and groundwater recharge is of paramount importance to understand 
water availability and ecosystem functioning at a range of spatial and 
temporal scales (Smith et al., 2022a). Groundwater, in particular, 
serving as a principal water resource for drinking and irrigation, re
quires extensive and continuous monitoring and predictions for sus
tainable, fair and economically sound use (Chang et al., 2016). 
Quantitative understanding of the spatio-temporal variations of ecohy
drological fluxes and water storage dynamics (e.g. soil moisture and 
groundwater level) is key to managing water resources particularly 
during major environmental perturbations such as droughts (Dari et al., 
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2019; Guse et al., 2019). Furthermore, as climate change further exac
erbates the risk of drought, understanding the complex dynamics of 
water availability is becoming increasingly important for effective 
mitigation strategies (Walker and Van Loon, 2023). However, the effects 
of long-term drought on landscape water storage in the European low
lands are poorly understood, despite their importance for maintaining 
ecosystem services, supporting agricultural production, and ensuring 
water security for human populations. 

Due to the advantages of machine learning models, such as high 
efficiency in processing large datasets, automation in capturing complex 
non-linear relationships and their skill in forecasting and prediction 
based on historical data, they have been increasingly applied to solving 
ecohydrological problems in recent years (Bergen et al., 2019). How
ever, data-driven machine learning techniques have some disadvantages 
when compared to traditional process-based ecohydrological models 
such as limited process interpretability (black box) and difficulties in 
discerning underlying causal relationships (Tague and Frew, 2021). 
While process-based models are built on conceptualising the underlying 
processes, data-driven approaches do not provide such insights. For 
example, they do not consider the closure of water and energy balances, 
which are fundamental to process-based ecohydrological modelling 
(Fatichi et al., 2016; Koppa et al., 2022). Consequently, a promising 
research direction, and the approach adopted in this study, is integrating 
process-based understanding with the adaptability and efficiency of 
machine learning techniques, capitalizing on the strengths of both ap
proaches to better assess drought impacts. 

Tracer-aided ecohydrological models offer integrated tools for 
analyzing the complex interactions between climate, hydrology, and 
ecosystems, potentially providing crucial insights for policy makers 
(Vose et al., 2011). These models account for key vegetation influences, 
such as canopy and rooting properties, as well as management effects 
(Guswa et al., 2020); and are applicable across various spatial and 
temporal scales. Through incorporating environmental tracers, e.g. by 
using stable isotope mass balances, these models allow for more robust 
representation of the processes influencing ecohydrological fluxes, 
water partitioning and landscape water storage dynamics under drought 
conditions (Smith et al., 2022a). This facilitates better tracking of water 
storage distributions, constraints on ecohydrological fluxes, disaggre
gation of evapotranspiration components and water age estimates 
(Birkel et al., 2011; Hrachowitz et al., 2013; Kuppel et al., 2020). 

Predicting groundwater levels is commonly used to aid sustainable 
long-term water resource management, as it facilitates assessment of the 
direct impacts of environmental change on groundwater resources 
(Wunsch et al., 2022). In recent decades, artificial neural networks 
(ANNs) have been widely applied to capture and predict changing 
groundwater levels in response to environmental drivers (Chang et al., 
2016; Coulibaly et al., 2001; Sun, 2013; Wunsch et al., 2021). Similar to 
other machine learning techniques, the main advantage of ANNs is their 
capability to model non-linear relationships between input and output 
variables. A 1D-ANN can be trained to mimic the correlational dynamics 
between environmental drivers and resultant groundwater level time 
series data without priori assumptions, and to accomodate noisy input 
data and adaptation to changing environmental patterns (Sun, 2013). 
Coulibaly et al. (2001) used insitu hydroclimate measurements and 
historic groundwater levels to design ANNs for forecasting groundwater 
levels. Wunsch et al. (2021) developed ANNs to predict groundwater 
levels using solely climatic input variables. Sun (2013) employed remote 
sensing data in the formulation of ANN ensembles and found that it 
enhanced the prediction performance of groundwater levels, particu
larly during extreme climatic events such as droughts. 

By incorporating the outputs of process-based ecohydrological 
models into the development of ANNs, one can leverage the strengths of 
both process-based and data-driven approaches and evaluate the po
tential impacts of various future precipitation scenarios on the recovery 
of groundwater after extreme droughts to pre-drought levels. However, 
it is important to recognize that despite the advantages of rapidity and 

efficiency offered by such hybrid approaches, the improvement in model 
performance may vary, underscoring the need for evaluations in such 
ecohydrological applications (Kraft et al., 2020). 

To increase understanding of the broader implications of drought on 
water resource resilience, this research uses data from a 70 km2 lowland 
catchment in Northern Germany. The study combines ecohydrological 
models and ANN to understand changing water fluxes and groundwater 
recharge in response to climatic variability. As such, the study aims to 
contribute to the evidence base needed to inform the development of 
sustainable and adaptive land and water management strategies tailored 
to the unique challenges posed by long-term droughts in this part of 
Germany. This study aims to address the following questions: 

How does drought influence water partitioning and storage in com
plex heterogenous lowland landscapes? 
How much time is needed to recover water levels to pre-drought 
conditions under contrasting landuses for different potential rain
fall inputs? 
Does the incorporation of process-based model outputs into a ma
chine learning model allows predicting recovery times of ground
water levels after a drought? 

2. Materials and methods 

2.1. Study area 

Demnitzer Millcreek is a meso-scale (~70 km2) catchment in the 
North European Plain (NEP) and typical for these lowlands, with a 
gentle topography, ranging from 30 to 90 m.a.s.l (Fig. 1). The soils are 
primarily based on glacial deposits and the water table is usually 1–3 m 
below the surface. Landuses reflect the hydrogeological units repre
sentative of the NEP with two monocultures dominating the catchment. 
Non-irrigated croplands account for over 50 % of the land area, while 
conifer forests cover approximately 30 % (Fig. 1c). Dominant soil types 
include silty brown earths on poorly-drained glacial till, which support 
arable crops, and podzols on freely-draining sands that sustain forests, 
mainly comprising Scots Pine (Pinus sylvestris). Along the stream 
network, poorly drained peat and gley soils provide suitable conditions 
for pasture for grazing sheep and cattle. Small areas of broadleaved 
forests, mainly oak and beech, are also present. 

The climate is classified as humid continental, with an average 
annual precipitation of around 600 mm and a mean annual temperature 
of approximately 10 ◦C. Over the past decade, precipitation has declined 
on average by ~20 mm per year, with negative precipitation anomalies 
becoming more frequent (Smith et al., 2022a). The region also experi
ences high potential evapotranspiration (PET), at around 600 mm per 
year, resulting in a negative water balance even in non-drought years. As 
such, the runoff coefficient is also low (<10 %). 

2.2. Datasets 

The datasets used for forcing, calibration, and validation purposes 
are provided in Table S1. The daily climate data, which include pre
cipitation, air temperature, relative humidity, and wind speed, were 
sourced from five nearby weather stations (<10 km) (German Meteo
rological Service, 2023). These weather stations were strategically 
chosen to represent the five climate zones in the catchment defined 
using Thiessen polygons. Daily short- and long- wave radiation data, leaf 
area index (LAI), along with evapotranspiration within the catchment 
were extracted from gridded global datasets as listed in Table S1. 

Since 2018, soil moisture monitoring has been conducted at a 15-min 
interval and then aggregated to daily scale using volumetric soil water 
content sensors (SMT-100, Umwelt-Geräte-Technik GmbH, Germany) 
with an accuracy of ±3 %. The monitoring has been undertaken at three 
depths (20, 60 and 100 cm) with 2 replicas per depth under different 
landuses, including forest, grassland and cropland) across the catchment 
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(two locations at Forest A and one location at Alt Madlitz; Fig. 1a) 
(Kleine et al., 2020; Landgraf et al., 2022b). Sap flow measurement were 
conducted with sap flow meters (SFM1 instrument, ICT International, 
Australia) at tree breast height within a mixed forest stand located at 
Forest A in 2018 (Fig. 1a) (Landgraf et al., 2022a). Since 2001, daily 
stream water discharge has been derived from the measured water levels 
using a rating-curve method at Demnitz and Demnitz Mill, while daily 
groundwater levels have been monitored at four locations (GW3-GW8) 
(Fig. 1b). The water levels are recorded with dataloggers (AquiLite ATP 
10, AquiTronic Umweltmeßtechnik GmbH, Kirchheim/Teck, Germany) 
(Smith et al., 2020). 

Stable water isotopes have been analysed from bulk soil samples, 
precipitation, groundwater and stream water. Bulk soil samples were 
monthly at different, dominant landuse-soil units collected in 2018 and 
analysed for stable water isotopes using a direct equilibrium method 
(Kleine et al., 2020). Precipitation water was sampled with an ISCO 
3700 autosampler (Teledyne Isco, Lincoln, USA) at Hasenfelde (Fig. 1b), 
with paraffin oil added to the sampling bottles to prevent evaporation 
(Landgraf et al., 2022b). Grab samples of stream water isotopes were 
collected on a weekly/daily basis. Monthly sampling of groundwater 
was conducted manually using a submersible pump (Kleine et al., 2020). 
All liquid samples were analysed for deuterium (δ2H) and oxygen-18 
(δ18O) in the laboratory using a Picarro L2130-i cavity ring-down 
water isotope analyser (Picarro, Inc., Santa Clara, CA, USA) (Landgraf 
et al., 2022b). 

2.3. Tracer-aided ecohydrological modelling 

2.3.1. EcH2O-iso model 
We employed the tracer-aided spatially-distributed ecohydrological 

model EcH2O-iso to quantify ecohydrological fluxes (i.e. evapotranspi
ration and residual groundwater recharge) and storage dynamics for the 
entire catchment. EcH2O-iso incorporates a tracer module for tracking 
stable water isotopes (δ2H and δ18O) transformations and their transport 
in water fluxes across diverse catchments (Kuppel et al., 2018). The 
model emcompasses four components coupling energy, water, vegeta
tion and isotopes dynamics. The energy balance is determined using a 
vertical scheme from the canopy to the land surface, driven by incoming 
radiation, air temperature, relative humidity, and windspeed, with 
latent heat fluxes calculated between the canopy and atmosphere, 
associated with the evaporation of canopy-intercepted water and tran
spiration. Ground heat flux is calculated for two soil thermal layers and 
is closely associated with soil heat capacity and thermal conductivity, 
which depends on soil moisture (Liebethal and Foken, 2007). The water 
balance follows a multi-layered structure with a vegetation canopy, soil 
surface, and three subsurface layers, estimating infiltration using the 
Green-Ampt approximation of the Richards equation. Lateral flow can 

either occur in the deepest subsurface layer if saturated, or as overland 
flow if the upper soil layer is saturated or rainfall instensity exceeds 
infiltration capacity. Vertical and lateral flow in the subsurface is esti
mated by kinematic routing once field capacity is exceeded. Soil evap
oration is restricted to the top layer, while root water uptake is 
parameterized exponentially across the three subsurface layers from the 
surface to the saturatured zone. A fully integrated vegetation module 
employs the Kroot parameter to determine the transpiration fraction 
derived from each soil layer and accounts for multiple vegetation types 
and bare soil, using a Jarvis-type multiplicative model for stomatal 
conductance estimation (Jarvis, 1976). The tracer module assumes full 
mixing in each storage compartment, with isotopic fractionation 
occurring only during soil evaporation (Craig et al., 1965; Gat, 1995). 
The isotopic composition of fluxes out of each compartment is the same 
as that stored for the same time step. More information on the model and 
its recent applications can be found in (A. Smith et al., 2021; Smith et al., 
2022a). 

2.3.2. Model configuration, calibration and validation 
Based on previous calibration of EcH2O-iso (fully detailed in A. Smith 

et al., 2021; Smith et al., 2022b), this study extended the study period to 
cover the 2022 drought. The model was set up to run at 250 m grid size 
at daily time steps for a simulation period of 16 years (Jan 2007 – Dec 
2022). The initial two years of simulation (2007–2008) served as a 
warm-up period to initialise soil moisture, groundwater storage, and 
discharge, including volumes and isotopic compositions, among other 
factors. Subsequent to this initial period, the model was calibrated using 
data from 2009–2014, and 2018–2019, which covered the 2018 
drought. The years 2015–2017 and 2020–2022 were set aside and used 
as validation periods to test the robustness of the model and to ensure its 
reliability in various climate conditions including the 2022 drought. The 
model was driven by the comprehensive set of climate data outlined in 
Sec 2.2, including precipitation, air temperature, relative humidity, 
wind speed, short- and long- radiation, as well as LAI and precipitation 
isotopes. The application of forcing data within the catchment was based 
on the distance to the surrounding measurement locations, which were 
assigned to their corresponding climate zones. Considering the limited 
observed spatial variation, precipitation isotopes were uniformly 
distributed across the entire study domain. 

Model multi-criteria calibration and valdation have been conducted 
using a variety of hydroclimatic and isotopic datasets including field 
measurements such as soil moisture, sapflow-derived transpiration, 
groundwater levels, isotopic data of streamwater, bulk soil samples and 
groundwater, as well as remote-sensing data such as MODIS 8-day 
evapotranspiration and latent heat (Running et al., 2017) (Table S1). 
Ten top-performing runs were chosen based on the best overall effi
ciency, using empirical cumulative distribution functions derived from 

Fig. 1. Demnitzer Millcreek catchment: (a) soils, (b) topography and (c) landuse types. Soil sampling sites are shown on the soil map; groundwater and stream 
sampling sites are shown on the topography map. 
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Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) and root mean 
square error (RMSE). These runs were selected from a total of 100,000 
parameter configurations, which were generated by combining the pa
rameters that passed the Morris sensitivity analysis for the multi-criteria 
calibration (Morris, 1991; Sohier et al., 2014). The Morris sensitivity 
analysis is particularly useful in dealing with high-dimension parame
ters, which involves a systematic and step-wise examination of the pa
rameters. Each parameter is varied one at a time and other parameters 
remain at their previous values to measure the effect of the change in 
this parameter on model outputs and to quantify the degree of vari
ability. In this study, each parameter was systematically varied by 50 % 
of its range using radial sampling to cover the entire range of possible 
model parameters, thus identifying the parameters with the highest 
sensitivity. Table S2 presents the identified most sensitive parameters 
related to soil, vegetation, and channel properties, as determined by 
averaging the trajectories’ outcomes. 

2.4. Artificial neural networks 

2.4.1. Nonlinear autoregressive exogenous (NARX) model 
The Nonlinear Autoregressive Exogenous (NARX) model is a type of 

recurrent ANNs commonly used for time-series predictions (Wunsch 
et al., 2018). The mathematical expression of NARX model is given in 
Eq. (1). 

y(t) = f(y(t − 1), ..., y(t − ny), x(t − 1), ..., x(t − nx)) (1)  

where y(t) is the dependent output that is regressed on previous values 
of the output and previous values of independent (exogenous) input 
variables x; f is the nonlinear function approximated by a feedforward 
neural network; ny denotes the feedback delays (FD); nx denotes the 
input delays (ID). 

As shown in Fig. 2, the structure of NARX model employed in this 
study consists of one input layer, one hidden layer and one output layer. 
NARX relates the current value of a time series to its past values and 
exogenous (independant) time series. In open loop mode, the output 
values are predicted based on previous observations such as climate time 
series and the true past values of the target (Fig. 2a). This mode is often 
used during training and testing phases. In closed loop mode, the NARX 
model incorporates its previous predictions as input (Fig. 2b), and is 
often used when deploying the model in further predictions. However, 
closed loop mode is also used for training when Bayesian optimization is 
used to optimize hyperparameters (Wunsch et al., 2021). Both modes 
allow for a potential delay to both exogenous variables and target var
iables. These types of delays are referred to as input delay (ID) and 
feedback delay (FD), respectively (Fig. 2) (Beale et al., 2010). NARX can 
also retain information for a duration two to three times longer 
compared to other recurrent neural networks (Wunsch et al., 2018). 
Compared to other ANNs and state-of-the-art deep learning techniques 
such as long short-term memory (LSTM), NARX has demonstrated su
perior performance in predicting groundwater levels in terms of 

accuracy (Wunsch et al., 2021). 

2.4.2. NARX model: Model selection, training, testing, and projection 
We employed the NARX model to project the the duration required to 

restore average groundwater levels in the catchment under various po
tential rainfall scenarios. The model was set up for four groundwater 
wells where data were available daily (Fig. 1b and Table S1). Input 
variables, aside from groundwater levels (GWL), included widely 
available climate data, such as precipitation (P), temperature (T), and 
relative humidity (RH), as well as the derived evapotranspiration data 
(ET) as an output from the EcH2O-iso modelling. Precipitation primarily 
drives groundwater recharge, whilst temperature and relative humidity 
account for the conditions affecting groundwater loss and concurrently 
provide the seasonal information in annual cycles (Wunsch et al., 2021). 
The analysis was conducted at weekly time steps, with the majority of 
this process carried out in MATLAB R2022b. 

Input data for NARX were splitted into different time blocks: Data 
from before 2021 were used to select and train models using a Bayesian 
optimization method (Kraft et al., 2020). Data from Jan 2021 to Dec 
2022 were fixed as test and evaluation datasets. During the Bayesian 
optimization, 80 % of the data were used for training, 10 % for early 
stopping (dropping non-promising runs) and the remaining 10 % for 
testing purposes (to disdinguish it from the fixed test dataset in 
2021–2022, this testing is denoted as “opt-testing”) (Fig. 7b). The 
training datasets covered both wet years (e.g. 2010) and drought years 
(e.g. 2018), which could help model training to better capture the 
groundwater level changing pattern. All data were normalized between 
− 1 and 1 before training to reduce the impact of different scales. The 
training was conducted using the Levenberg-Marquardt algorithm to 
find the optimal model architecture and hyperparameters (Adamowski 
and Chan, 2011). Different combinations of input variables (i.e. T, RH 
and ET; P was a fixed input) and hyperparameters (e.g. hidden neurons, 
ID and FD) were examined during the optimization. We implemented 
one hidden layer, which uses the hyperbolic tangent sigmoid activation 
function, with a variable number of 1–20 hidden neurons to first train 
the model in closed loop mode. ID and FD were optimized between 1 and 
52 (equivalent to 1 year). We established an upper limit of 30 epochs for 
the training process. Furthermore, the maximum validation failures 
were set to 5 epochs, after which early stopping of the model training 
would occur. The number of optimization iterations was between 25 and 
50, with each iteration comprising 5 runs to mitigate uncertainties. The 
objective function was formulated based on the mean of the 5 runs, 
calculated in terms of the sum of NSE and the squared Pearson corre
lation coefficient (R2). The model architecture with the highest value of 
the objective function was selected for further testing and evaluation. To 
account for uncertainty in testing, ten repetitions were conducted for 
each groundwater well, following Wunsch et al. (2021). After achieving 
satisfactory results in testing based on three efficiency criteria—NSE, R2, 
and RMSE—the model loop networks were used for future projections. 

Before projections, we examined the long-term (2007–2022) 

Fig. 2. Structural diagram of the NARX model with one hidden layer. a) open loop; b) closed loop. Input variables include precipitation (P), temperature (T), relative 
humidity (RH) and EcH2O-iso generated evapotranspiration (ET). Output variable is groundwater level (GWL). 
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precipitation pattern for alterations using the Pettitt test, a common 
method for identifying change points in hydrological time series (Luo 
and Chui, 2020). The precipitation patterns were then categorized into 
two periods, each exhibiting distinct precipitation pattern with statis
tical significance (p < 0.05). Recent years showed an exceptionally low 
average precipitation (<495 mm) and were subsequently designated as 
dry years. Consequently, the scenarios for groundwaer level forecasting 
emcompassed: “normal” years (2007–2013), dry years (2014–2022), 
2010 as a wet year and 2018 as a drought year. These scenarios were 

iteratively simulated 2–15 times over a 15-year period. It should be 
noted that not all input variables were used for projections. Following 
Bayesian optimization, the input variables were selectively included 
based on the optimal model architecture, which comprised a fixed P 
component and optional variables such as T, RH or ET. Instead of using a 
detrended seasonal component of each variable for projection, the his
torical datasets preserving the actual variability were directly extracted. 
Finally, these input datasets were used for predictions with the ten tested 
models. 

Fig. 3. Performance evaluation of the EcH2O-iso model under contrasting landuses and gauge stations. (a) precipitation; (b) and (c) discharge at two discharge gauge 
stations (Demnitz Mill and Demnitz); (d) and (e) soil moisture of layer 1 (top 15 cm) at forest (Forest A) and cropland sites (Alt Madlitz), respectively; (f) and (g) 
evapotranspiration at forest and cropland sites, respectively. The “*” after Forest A represent a nearby cell with 100 % conifer forest composition. The lines denote the 
median simulation results, and the shaded areas depict the bounds of ensemble simulation uncertainty. The black dots represent the observations in the calibration 
periods (2009–2014 & 2018–2019), and the pink dots represent the observations in the validation periods (2015–2017 & 2020–2022). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3. Results 

3.1. EcH2O-iso model performances of ecohydrological fluxes 

Across different observational data under different landuses, overall 
uncertainties of EcH2O-iso were effectively managed (Figs. 3 and 4). The 
model successfully captured the different fluxes under contrasting 
landuses. At both discharge gauge stations Demnitz Mill and Demnitz, 
the simulation showed good performance, with both calibration and 
validation NSE exceeding 0.7 and RMSE falling below 0.1 at the former 
(Fig. 3b). The model also maintained reasonable performance at Dem
nitz with a calibration NSE of 0.66 and RMSE of 0.11 (Fig. 3c). 

The model also demonstrated satisfactory performance in simulating 
soil moisture variations, with the majority of observations aligning 
within the ensemble simulation range with the RMSE ≤ 0.05 for both 
sites (Fig. 3d and e). Importantly, as the Forest A model cell contains 

different landuses, we only show the comparison between the observa
tion collected in the forested area within this cell with the simulation in 
a nearby cell with 100 % forest cover. 

The seasonal variations of evapotranspiration were also been effec
tively captured at both the forest and cropland sites with RMSE values of 
~1 (Fig. 3f and g). 

The calibration of stream isotopes at three locations showed low 
uncertainties with calibration RMSE values not exceeding 3.6 ‰ and 
validation RMSE not exceeding 5.2 ‰ (Fig. 4a-c). From 2018 to 2019, 
the median groundwater isotope simulation results also showed a good 
agreement with the observed data, exhibiting minimal seasonal varia
tions (Fig. 4d). Multiple monthly observations of soil water isotopes also 
exhibited reasonable alignment with the simulation ranges at different 
soil layers (Fig. 4e and f). 

Fig. 4. Performance evaluation of isotope simulation of EcH2O-iso model across different landuses. (a-c) stream isotopes at Demnitz Mill, Bruch Mill and Peat North, 
respectively; (d) groundwater isotopes at GW4; (e) and (f) soil water isotopes of layer 1 (top 15 cm) and layer 2 (top 15–35 cm) at forest site. The lines denote the 
median simulation results, and the shaded areas depict the bounds of ensemble simulation uncertainty. The black dots represent the observations in the calibration 
periods (2018–2019), and the pink dots represent the observations in the validation periods (2020–2022). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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3.2. Long-term ecohydrological fluxes and storage changes 

Fig. 5 presents the percentage changes in key ecohydrological in
dicators averaged at the catchment scale since 2018, demonstrating the 
cummulative effects of recent dry years. Apart from precipitation, the 
other three ecohydrological indicators — evapotranspiration (ET), soil 
moisture in the upper soil layer (top 15 cm) and groundwater recharge 
— were all estimated by EcH2O-iso. In recent years, negative anomalies 
in precipitation have had severe adverse impacts: reduced groundwater 
recharge, a decline in water storage represented by soil moisture, and 
consequently, a decrease in ET due to limited water storage. Using the 
long-term average (i.e. 2009–2022) as a Baseline, since 2018 there have 
been five consecutive dry years, among which 2018 and 2022 were 
particularly severe drought years with a reduction in precipitation of 30 
% and 26 %, respectively. In the remaining three years, the decrease was 
<10 % but still less than the long-term average values. Corresponding to 
precipitation, the variable showing the most significant reduction was 
groundwater recharge, with average declines of 39 % and 44 % in 2018 
and 2022, respectively, compared to the long-term average. ET 
decreased by − 1% to − 16 %, and surface soil moisture decreased by 
− 1% to − 6%. 

3.3. Landuse effects on water fluxes and storage 

Fig. 6 shows the impacts of different landuses on groundwater 
recharge, soil moisture in the upper soil layer and ET. The dominant 
landuse types in the whole NEP, namely conifer forests and croplands, 
were specifically considered in the analysis. The analysis of all cells 
provides a comprehensive overview of the catchment as a whole and 
mitigate any potential bias from cells representative of a single landuse. 
Fig. 6a presents the distribution of the ecohydrological fluxes (i.e. 
groundwater recharge and evapotranspiration) and water storage (i.e. 
soil moisture) in the model domain under different landuses; Fig. 6b 
shows their percentage changes. In general, the ecohydrological vari
ables exhibited most significant declines in 2018 and 2022 for both 
conifer forests and croplands. During the Baseline period (2009–2022), 
croplands showed significantly higher long-term average groundwater 
recharge than conifer forests. This pattern was not evident during the 
extreme drought years in 2018 and 2022 due to the substantial decline 
in groundwater recharge under croplands (Fig. 6a and Figure S2). 
However, the percentage change observed in croplands was slightly 
lower than that of conifer forests due to the higher original values and 
exhibited larger differences in extreme drought years (2018 and 2022) 
and dry years (2019–2021). For conifer forests, all five years showed a 
decline in recharge from the long-term mean of >25 %, with the highest 
decrease exceeding 38 % in 2022 (Fig. 6b). Soil moisture was highest 
under pasture, as revealed by the Baseline panel (Figs. 1 and S2). Similar 

to groundwater recharge, the modelled percentage decline in soil 
moisture was most significant in 2018 and 2022, with croplands 
showing a higher decline (up to 10 %). ET was estimated as being higher 
in conifer forests than in croplands (largely due to higher interception 
and transpiration; Figure S2 and S3), as indicated by the Baseline, and 
conifer forests experienced a generally greater decline (Fig. 6a), result
ing in more uniform, supressed evapotranspiration distribution espe
cially in drought years (2018 and 2022) (Figure S2). Although there was 
a small increase of less than 1 % in croplands’ ET in 2019 and 2020 
compared to the Baseline, it was not enough to offset the overall decline 
in ET observed in both landuses during the dry years (Fig. 6b). 

3.4. Recovery times for groundwater levels 

To estimate the potential groundwater recovery times after the 
drought, we first analyzed the long-term precipitation patterns to 
develop different precipitation scenarios that would be used in the 
projections. A shift in the precipitation pattern was identified in 2013, 
with the years before or after 2013 categorized as normal or dry years, 
with an average annual precipitation of 635 and 495 mm, respectively 
(Fig. 7a). Fig. 7b displays the gradual decline of groundwater levels at 
GW4 in the past decade, accompanied by projections for future 
groundwater levels under different potential rainfall scenarios. Similar 
declining trends in the past decade were also observed at the other three 
wells (Figure S1). 

The optimal NARX model architecture was determined based on the 
objective function value derived from the Bayesian optimization 
(Table S3). The performance during the optimization across all four 
wells indicated robust model capability with the sum of NSE and R2 

values ranging from 1.2 to 1.6. Regarding the three optional input 
variables (i.e. RH, T, and ET), no single variable was found to be uni
versally critical for all wells. For instance, ET as the output of EcH2O-iso, 
was not selected for GW4 as it did not enhance the model performance. 
However, for all other wells, ET was selected as the decisive input var
iable for groundwater level prediction. Fig. 7b displays the NARX model 
Bayesian optimization, test- and prediction results, including the testing 
efficiencies and the projections for one groundwater well (GW4) under 
different climate scenarios. The NSE was 0.89, while the RMSE was 0.12 
m, and the R2 was 0.83. Performance metrics for the NARX models at 
other groundwater wells in the catchment are given in Figure S1, all 
showing satisfactory results. All sites exhibited NSE values no less than 
0.64, RMSE values not exceeding 0.22 m, and R2 values above 0.58. 
Fig. 7b and Figure S1 also show the most recent groundwater level data 
from 2023, overlaid with our projections. Except for GW3, which was 
decommissioned in late 2022, the data from the the remaining wells 
confirmed that our projections are within a reasonable and justifiable 
range. 

Fig. 7c shows the time needed for the annual average groundwater 
levels to return to the normal-year average under different climate 
scenarios. Apart from different scenarios, the analysis of each well also 
incorporates the median, as well as the lower and upper bounds, derived 
from ten repetition of the machine learning model to account for the 
model uncertainties. If future climate patterns resemble those of 2018 
(drought year), the groundwater levels at all four locations will see a 
continuous decline (Fig. 7b and Figure S1) and will not return to normal- 
year groundwater levels (Fig. 7c). If climate patterns are akin to the dry- 
year average (post-2013), the median projections suggest that − except 
for GW8 − the three wells might require an average recovery period of 6 
years, with GW4 potentially taking up to 13 years. In contrast, all wells 
are anticipated to recover under upper bound projections, with the re
covery duration shortened to an average of 2.5 years. However, under 
lower bound projections, none of the wells are expected to recover. If 
future climate patterns are similar to those in 2010 (wet year), median 
projections suggest that all sites can return to the normal-year average 
within 1–2 years. Upper bound projections also suggest a recovery for all 
wells within 1 year. However, under lower bound projections, only GW3 

Fig. 5. Percentage changes of catchment-wide precipitation (Pre), evapo
transpiration (ET), soil moisture of the top 15 cm (SMC_L1) and groundwater 
recharge (GWr) from long-term mean (i.e., 2009–2022) in the Demnitzer 
Millcreek catchment since 2018. The error bars represent the 80 % spread of the 
behavioural simulations. 
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Fig. 6. Distribution (a) and percentage change (b) of daily average groundwater recharge (GWr), soil moisture in upper soil layer (SMC-L1), and evapotranspiration 
(ET) in two dominant landuses (i.e. conifer forests and croplands) of the study catchment and the North European Plain. Baseline represents the long-term 
(2009–2022) average. The percentage change was computed based on Baseline. 

Fig. 7. Forecasts of groundwater levels using a Nonlinear autoregressive exogenous (NARX) model. (a) Annual precipitation pattern divided into two periods 
(normal and dry years) using the Pettitt test; (b) Left panel (until 2020): Historical groundwater levels at GW4 that were used for training, early stopping and opt- 
testing during the Bayesian optimization. Middle panel (2021–2022): Test period when the model was run ten times to account for uncertainties (more transparent 
lines). The solid pink line represents the median of the ten repeats. Right Panel: Projections generated by the ten tested models under various climate scenarios. The 
dashed lines depict trendlines corresponding to the solid lines of matching colors in the time series; (c) Time needed to return to normal-year average groundwater 
level under different climate scenarios. ’Median’, ’Lower’, and ’Upper’ denote the median value and the lower and upper bounds of the projections from ten 
repititions of the machine learning model, respectively. Empty columns = no bars indicate that the groundwater levels could not recover within the next 15 years of 
simulation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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can recover to the normal-year average within 1 year, and the remaining 
wells will not recover. When climate patterns align with the normal-year 
average (pre-2013), all sites can recover within a timeframe of 1–3 years 
and 1–2 years for median and upper bound projections, respectively. 
The average recovery time is 1.8 years for median projections and 1.5 
years for upper bound projections. Similarly to 2010 scenario, under 
lower bound projections, only GW3 will potentially recover within 1 
year. 

4. Discussion 

4.1. Value of linking process-based models and machine learning for 
drought assessment 

The advantage of integrating process-based models with machine 
learning approchaes is to preserve the physical consistency and inter
pretability inherent in process-based models, while also benefiting from 
the capabilities of machine learning models; namely providing more 
efficient, data-driven representations of processes that may be inade
quately understood (Koppa et al., 2022). Several applications have 
demonstrated the effectiveness of such hybrid approaches in modeling 
ecohydrological processes (Kraft et al., 2022; Lin et al., 2021; Rasp et al., 
2018). In our study, the potential benefits of incorporating the output of 
the process-based model into the machine learning model was demon
strated. During the determination of the machine learning model ar
chitecture, the EcH2O-iso output (i.e. ET) was identified as an important 
input variable for predicting groundwater levels in three out of four 
wells. Thus, incorporating ET estimates from model outputs is valuable 
in assessing groundwater drought. A study analyzing the groundwater 
drought in the UK also showed that ET plays a key role in forming and 
propogating groundwater drought, although estimating ET is chal
lenging (Bloomfield et al., 2019). In alignment with this, the hybrid 
approach adopted in our study facilitated integrating insights from 
EcH2O-iso, calibrated with extensive, long-term datasets including 
tracer data, and meanwhile allowing projections using smaller historical 
datasets. This would not have been possible with process-based models 
or data-driven models alone. 

4.2. Effects of drought on water flux partitioning and storage 

In recent decades, Europe has witnessed major droughts in 2003, 
2015, 2018 and 2022. These events with more frequent anomalous high 
temperatures and rainfall deficits are now considered not exceptional 
but a “new normal” to come in the next decades (van der Woude et al., 
2023). A recent reconstruction analysis revealed that a longer-term 
drying trend in Europe started as early as 1850 (An et al., 2023). The 
extreme drought event in 2018, followed closely by another even more 
severe event within five years (2022), underscores the escalating fre
quency and intensity of these extremes. The primary driver of these 
enhanced summer heatwaves in Europe has been attributed to anthro
pogenic warming, specifically with effects in the arctic affecting large 
scale weather patterns (Samaniego et al., 2018; Zhang et al., 2020). 
When combined with enhanced land–atmosphere feedback (i.e. anom
alies in large-scale atmospheric circulation), these factors collectively 
suppress precipitation, thereby triggering drought conditions (Zhou 
et al., 2019). Both soil moisture and groundwater recharge declines as 
observed in our study are predominantly driven by these negative pre
cipitation anomalies. Consequently, diminished water availability in the 
subsurface (e.g. low soil moisture and deeper groundwater) can restrict 
evapotranspiration, manisfesting in the reduction in the transpiration, 
photosynthesis and biomass production (Seneviratne et al., 2010). 
Figure S3 clearly illustrated this process by showing the differences in 
fluxes and storages simulated by EcH20-iso in the wet (2010) and the 
drought years (2018). 

Adequate incoming precipitation allows for differentiation in water- 
use strategies between different vegetation communities. For instance, 

forests exhibit higher interception and transpiration losses (Figure S3). 
Consequently, lower infiltration and groundwater recharge were simu
lated in the forested parts of the catchment. When precipitation almost 
halved, the initial impact was on the intercepted water and infiltration, 
subsequently leading to reduced soil moisture and groundwater 
recharge. The water scarcity during the drought year narrowed the 
differences in water fluxes between forests and croplands (shown in 
Figure S2 with an overview of the entire study catchment). During the 
two main drought years (2018 and 2022), the spatial variations in 
groundwater recharge and evapotranspiration were small across the 
contrasting landuses indicating extensive suppression of fluxes during 
periods of water limitation. 

4.3. Drought recovery 

Our study revealed that the diverse landuse patterns, ranging from 
agricultural to forest ecosystems, exhibited varying degrees of vulnera
bility to drought. As indicated by the more substantial decline during 
extreme drought years (Fig. 6a and S2), in our study region croplands 
seem more vulnearable/sensitive to the effects of drought on ground
water recharge but also with the potential to recover quicker after 
drought. Concurrently, croplands encountered a greater decline in soil 
moisture, with a slight rise in evapotranspiration during wetter years in 
the study period (Fig. 6b). On the other hand, conifer forests demon
strated longer-lasting negative effects from drought on groundwater 
recharge since the extreme drought year 2018 (Fig. 6b). In the following 
years, simulations showed that rewetting from 2019 to 2021 was 
probably inadequate for groundwater recharge to recover under the 
conifer forests. The differences in groundwater recharge recovery be
tween the two landuses can be attributed to the nonlinear relationship 
between the simulated soil moisture and groundwater recharge 
(Figure S4). In both forests and croplands, groundwater recharge re
mains low until soil moisture exceeds a specific threshold, after which it 
increases sharply. This pattern is consistent with the nonlinear expo
nential relationships established in Apurv et al. (2017) and Berthelin 
et al. (2023). Interestingly, both the soil moisture and recharge ranges at 
our site in Central Europe were of the same magnitude as those in an arid 
climate (Apurv et al., (2017). In contrast, the soil moisture range was 
about half of that in a more humid and permeable karst aquifer in 
Germany and groundwater recharge was also one order of magnitude 
smaller (Berthelin et al., 2023). During drought years when soil moisture 
further decreased it would result in greater reduction in groundwater 
recharge in the cropland than under conifer forest (Fig. 6a). This 
nonlinear relationship is particularly informative on how groundwater 
droughts can develop locally under different landuses. 

The observed variations in vulnerability across different landuses 
can also be attributed to their distinct subsurface storage characteristics 
(in turn strongly dependent on landscape evolution and pedogenesis). 
Particularly in catchments receiving lower precipitation inputs, storage 
capacity becomes crucial in retaining water within the catchment soils 
and aquifers and facilitating its gradual release (Apurv and Cai, 2021; 
Carey et al., 2010). Both cropland and conifer forest systems are located 
on soils with relatively low storage capacities; though the brown soils of 
the croplands are more silty throughout their profile and more retentive 
than the sandier forest podzols. However, for the croplands, low soil 
organic carbon contributes to the low water-holding capacity in the top 
soil, thereby reducing the overall soil moisture (L.C. Smith et al., 2021). 
This partly explains why evapotranspiration and groundwater recharge 
of croplands could recover slightly after the 2018 drought, but the 
decline in soil moisture was greater and lasted longer (Fig. 6b). Unlike 
croplands, conifer forests typically have denser canopy cover and high 
interception and transpiration rates, generally consume more water, 
with the former reducing net rainfall reaching the ground and infil
trating (then percolating) into the subsurface all year round, thus 
limiting the subsurface water storage capacity in the system (Douinot 
et al., 2019; Zal et al., 2015). This also explains the slower recovery 
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groundwater recharge of conifer forests if negative precipitation 
anomalies persist after drought (Fig. 6). 

The projected recovery times under different precipitation scenarios 
raise serious concerns regarding groundwater resources over the coming 
decade if future precipitation negative anomalies continue. The upper 
bound projections represent best-case scenarios, while the lower bound 
projections represent more conservative estimates. In the worst-case 
scenarios groundwater recovery is nearly impossible for all sites, 
except for GW3 in wetter years. Here, we discuss median projections as 
the maximum drought recovery time. According to our models, given 
the current landuse patterns and recent average precipitation levels (i.e., 
495 mm per year), optimistically all sites will have the potential to 
recover to pre-drought groundwater levels with an average of 2.5 years. 
Under longer-term average precipitation levels (635 mm), the simula
tions suggest it will only 1–2 years for all sites to recover. A study 
encompassing all of Germany revealed that the northern regions tend to 
experience longer-lasting groundwater droughts as a result of lower 
precipitation than Germany’s south due to lower hydraulic conductivity 
and flatter topography. These droughts effects have the potential to 
persist for years, averaging ~2.4 years in the North, which aligns with 
our findings (Hellwig et al., 2020). Notably, the projected recovery time 
could be longer. Under the post-2013 scenario, median projections for 
groundwater recovery, with an average of 6 years, exhibited large 
variance from 1 year at GW7 to 13 years at GW4. Such variance may be 
attributed to the local differences in recharge and hydrogeology 
(Bloomfield et al.,2015). Bloomfield and Marchant (2013) used a Stan
dardized Groundwater level Index (SGI) and found that maximum 
groundwater droughts in England lasted for 12–73 months. Globally, 
droughts may endure for years and even longer, particularly in the 
context of anthropogenic warming ((Bloomfield et al., 2019; Walker and 
Van Loon, 2023). 

4.4. Wider implications 

Catchments with low resilience are sensitive to changes in external 
perturbations such as droughts (Carey et al., 2010). In this context, both 
monoculture landuses showed limited resilience to external changes, as 
monocultures lack biodiversity and can reduce the stability of ecosys
tems (de Groot et al., 2021; Wright et al., 2021). Nevertheless, arable 
lands and conifer forests stand out as the predominant types of landuse 
across Central Europe. In the face of frequent reccuring drought events, 
it is very likely that drought “memory effects” on soil moisture occur, 
which may in turn influence plant phenology and biomass productivity, 
eventually decreasing the ecosystem resistance to subsequent droughts 
(Hoover et al., 2021). The results emphasize the need for landuse 
management strategies that enhance the resilience of landuses to 
drought events by increasing water retention. This may include tran
sitioning away from monocultures and exploring alternative land man
agement plans, such as agroforestry and mixed forests. These strategies 
could enhance the landscape’s storage capacity, allowing for the gradual 
release of input water, thereby better addressing the challenges posed by 
climate change (Liu et al., 2018). Our findings highlight the vulnera
bility of groundwater resources and landscape water storage to precip
itation changes and vegetation cover. They also underscore the 
importance of adaptive water management and conservation strategies. 
Policymakers and stakeholders need such an evidence base to assess the 
potential long-term impacts of precipitation anomalies on groundwater 
levels, and develop landuse strategies to ensure food and water security 
in increaseingly drought prone areas such the extensive lowlands of 
Central Europe. 

5. Conclusion 

We merged the advantages of both process-based (EcH2O-iso) and 
machine learning (NARX) models to evaluate the impact of increasingly 
frequent drought events in Central Europe on landscape ecohydrological 

flux partitioning and water storage, and to predict the recovery of 
groundwater under different precipitation scenarios. This hybrid 
approach effectively incorporates the established physical principles 
inherent in the process-based model, while also leveraging the more 
straightforward and flexible features of the machine learning model. 
This is especially useful for assessing future scenarios where data for 
process-based models may be lacking. Our results revealed that recent 
droughts have had a profoundly negative impact on the ecohydrology of 
a lowland catchment in Northern Germany. Catchment-scale ground
water recharge, soil moisture, and evapotranspiration have seen sub
stantial reductions, especially during the main drought years of 2018 
and 2022, when we observed that water fluxes across the entire catch
ment exhibited minimal spatial variations (across different land uses) 
under sustained water scarcity. However, we still observed distinct 
vulnerabilities in the ecohydrological pathways to drought between 
contrasting landuses of croplands and conifer forests, primarily due to 
their different subsurface storage capacities. Assuming the continuation 
of recent negative precipitation anomalies, our predictions for ground
water recovery is pessimistic, with one well unlikely to recover and the 
other three wells may require an average of 6 years to regain pre- 
drought water levels. These findings underscore the urgent need and 
importance of exploring alternative land management strategies to 
augment water storage in the landscape and resilience to drought, given 
the escalating frequency and severity of droughts. Our research thus 
provides a valuable science-base to support evaluations of drought im
pacts on ecohydrological processes and future land management studies, 
serving the needs of policy-makers and stakeholders. 
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